注册
登录
当前位置:神笔范文网>范文大全 > 教案设计 > 2023年勾股定理教案范本,勾股定理教案教学方法5篇【完整版】

2023年勾股定理教案范本,勾股定理教案教学方法5篇【完整版】

时间:2024-01-27 15:20:04 教案设计 来源:网友投稿

勾股定理教案范本勾股定理教案教学方法教学准备1、教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2.培养在实际生活中发现问题下面是小编为大家整理的勾股定理教案范本,勾股定理教案教学方法5篇,供大家参考。

勾股定理教案范本,勾股定理教案教学方法5篇

勾股定理教案范本 勾股定理教案教学方法篇1

教学准备

1、教学目标

1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

2、教学重点/难点

1.重点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

3、教学用具

4、标签

教学过程

设置情景问题,导入新课

相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.(图看幻灯片)

数学家毕达哥拉斯的发现:SA+SB=SC

引申到直角三角形

让学生画一个直角边为75px和100px的直角△ABC,用刻度尺量出AB的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:'把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。“这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质吗?

我国汉代的数学家赵爽指出:四个全等的直角三角形如下拼成一个中空的正方形。

通过位移的形式幻灯片展示

总结:勾股世界

我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角三角形,如果勾等于三,股等于四,那么弦就等于五。即'勾三、股四、弦五“。它被记载于我国古代著名的数学著作《周髀算经》中。在这本书中的另一处,还记载了勾股定理的一般形式。

1945年,人们在研究古巴比伦人遗留下的一块数学泥板时,惊讶地发现上面竟然刻有15组能构成直角三角形三边的数,其年代远在商高之前。

相传二千多年前,希腊的毕达哥拉斯学派首先证明了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。

例习题分析

例1(补充)已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

求证:a2+b2=c2。

分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷ 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名...

全文已隐藏

(想阅读全部图文内容,您需要先登陆!)

推荐访问:勾股定理 教案 教学方法

版权所有:神笔范文网 2010-2024 未经授权禁止复制或建立镜像[神笔范文网]所有资源完全免费共享

Powered by 神笔范文网 © All Rights Reserved.。备案号:京ICP备10026312号-1